
Faults Discovery Using Mined Data

Charles Lee

SAIC
c/o NASA Ames Research Center

Moffett Field, CA 94035
650-604-6054

charles.lee@saic.com

Abstract—Fault discovery in the complex

systems consist of model based reasoning, fault

tree analysis, rule based inference methods, and

other approaches. Model based reasoning builds

models for the systems either by mathematic

formulations or by results of experiments. Fault

Tree Analysis shows the possible causes of a

system malfunction by enumerating the suspect

components and their respective failure modes

that may have induced the problem. The rule

based inference build the model based on the

expert knowledge. Those models and methods

have one thing in common; they have presumed

some prior-conditions. Complex systems often

use fault trees to analyze the faults. Fault

diagnosis, when an error occurs, is performed by

engineers and analysts performing extensive

examination of all data gathered during the

mission. International Space Station (ISS)

control center operates on the data feedback from

the system and decisions are made based on

threshold values by using fault trees. Since those

decision-making tasks are safety critical and

must be done promptly, the engineers who

manually analyze the data are facing the

challenge of time limit. To automate this

process, this paper presents an approach that uses

decision trees to discover faults from data in

real-time and capture the contents of fault trees

as the initial state of the trees.

1. INTRODUCTION

Decision trees (also called classification trees)

are the binary trees built from data samples and

can classify the objects into different classes. In

our case, the decision trees can classify different

fault events or normal events. Given a set of data

samples, decision trees can be built and trained,

and then by running the new data through the

trees, classification and prediction can be made.

In this way, diagnostic knowledge for fault

detection and isolation can be represented as

diagnostic rules; we call this tree the diagnostic

decision tree(DDT). By showing the fault path

in decision trees, we also can point out the root

cause when a fault occurs. Since all the

procedures and algorithms are available to build

decision trees, the trees built are cost effective

and time effective. Because the diagnostic

decision trees are based on available data and

previous knowledge of subsystem logic, the

DDT can also be trained to predict faults and

detect unknown faults. Based on this, the needs

for on-board real time diagnostics can readily be

met. Diagnostic Decision Trees are built based

on the fault trees as static trees that serve as the

fundamental diagnostic trees, and the dynamic

DDTs are built over time from vehicle telemetry

data. The dynamic DDT will add the

functionalities of prediction, and will be able to

detect unknown faults. Crew or maintenance

engineers can use the decision tree system

without having previous knowledge or

experience about the diagnosed system. To our

knowledge, this is the first paper to propose a

solution to build diagnostics decision trees from

fault trees, which convert the reliability analysis

models to diagnostic models. We show through

mapping and ISS examples that the approach is

feasible and effective. We also present future

work and development.

Detecting faults in a complex system requires

complex diagnostic tools. Fault tree is one of

those tools to be used for analyzing and

diagnostic fault. The fault tree concept was

introduced by Bell Telephone Laboratories in

1962 for the U.S. Air Force for use with the

Minuteman system [8]. It was later adopted and

extensively applied by the Boeing Company and

is one of the most widely used methods in

system reliability analysis for a long time [4]. It

is a deductive procedure for determining the

various combinations of hardware and software

failures and human errors that could result in the

occurrence of specified undesired events

(referred to as top events) at the system level. As

part of the analysis, the minimal cut sets of a

fault tree can be determined [3], and then fault

trees can be built. Individual fault trees can be

visualized and drawn. Fault trees are usually

individually built for each part of the system for

each top event. It is very difficult to have generic

software to traverse fault trees. On the other

hand, the decision trees are matured data

structures and it is very easy to be manipulated

in a software program. Using decision trees to

represent fault trees will increase the operability

and decrease response time for system

diagnostics, and furthermore, will make it easier

for users to visualize the root cause of the fault

and path from which the fault came. The high

availability of many different tree algorithm

implementations in the computer science field

makes using decision tree to manage the fault

trees one of best approaches. In this paper, we

present a method to convert existing fault trees to

decision trees. More general ways of

constructing decision trees are presented. The

method is easy to program and run on a

computer since the decision tree algorithms have

many available implementations [5]. This

method also provides a good tool for researchers

on simulation and prediction tasks. By using this

method, one can analyze data samples from the

past and categorized them into different classes;

abnormal, normal, and fault events in such a way

that future faults can be predicted from the past.

This could be a data mining components with

run time updating processes. Such an artificial

intelligent application is presented in the paper as

a form of framework architecture.

2. DETECTING FAULTS FROM DATA

Using decision trees, we can detect fault from

data by monitoring the data values and compare

to the fault patterns. When we do not have the

fault patterns at beginning of the system, we

need to set up initial trees with results of fault

analysis of static system. Usually we can start

with fault trees. Then we migrate the fault trees

to decision trees. We also can build decision

trees from events and telemetry data during run

time when real data is coming in. The decision

trees converted from fault trees can be used as

diagnostic tools. When fault occurs, we can

recognize the fault by running telemetry data

through the trees and finding out where the data

stops. Also, the type of fault can be categorized

and its path can be determined by such trees.

Other applications are also possible by utilizing

decision trees. Once we know that the decision

tree is very well suited for data mining tasks, we

can apply our trees to a data mining framework

targeting at recognizing fault patterns and do

early fault detection and prediction. Data mining

is the process of analyzing data from different

perspectives and summarizing it into useful

information. It allows users to analyze data from

many different dimensions or angles, categorize

it, and summarize the relationships identified. In

our case, it is the process of finding fault

patterns. A design model, also we can call it a

framework model, is presented in Figure 1. In

the figure, we can see how the hybrid decision

trees, in this case it a kind of fault decision tree,

fit into the knowledge discovery part of the data

mining process [7]. Initially, the trees are built

for known fault. For example, the initial trees

converted from fault trees. Then we have

decision trees built from real time data while the

system is running. While we know the fault trees

could not be developed run time and could not

be used in such application, the decision trees are

so easy to be fit into such an application. We can

build such a tree that records fault patterns each

time a fault event occurs. Essentially, we record

the fault trends patterns so we can use such trees

to recognize a fault in its early stages.

Data

Acquisition

RT data

Data

warehouse

Verification

Data

Pre-processing

Train ing

data

Fault

Patterns

Decision

Trees

Data

Acquisition

RT data

Data

warehouse

Verification

Data

Pre-processing

Train ing

data

Fault

Patterns

Decision

Trees

Figure 1 Decision trees in fault

discovery application

3. CONVERSION METHOD

There are some other attempts to represent fault

trees by other forms; one of them is building

diagnostic maps from fault trees [2]. Decision

trees are trees usually built from data. Let’s look

at a fault tree and see how can we map it to the

decision tree. Take a sample fault tree in the

form of following:

V
o
lt
a
g
e
 A

 o
v
e
r

tr
ip

 s
e
t
p
o
in

t
1
2
9

V
a
lid

it
y
 0

 (
1
=

in
v
a
lid

)

3
 c

o
n
s
e
c
u
ti
v
e
 r
e
a
d
in

g
s

R
e
c
o
n
fi
g
 d

e
a
c
ti
v
e
 1

 (
0
 =

a
c
ti
v
e
)

over voltage

V
o
lt
a
g
e
 B

 ,
<

=
1
0

V
a
lid

it
y
 0

 (
1
=

in
v
a
lid

)

Figure 2 Over Voltage Event Fault Tree

We have 6 inputs to the tree. The inputs remain

the same for the decision tree. The corresponding

decision tree should have the same functionality

in terms of sample inputs and fault triggers. In

the other words, the same inputs to the fault tree,

or to the decision tree will have the same result.

The corresponding tree can be built as in Figure

3. If by applying the telemetry data one can

propagate all the way to terminal node 6, we

know that the system is at an over voltage fault.

The decision tree not only provides the final

result if the system is at fault status, it can also

provides the interim status by looking at where

the sample data end up. To ease the decision tree

generation and notation, we give the signals

short names as follows:

Consecutive readings = ct; Voltage A over trip

point 129 = Ua; Validity UaA = UdA; Reconfig

deactive = Config; Voltage B = Ub; Validate Ub

= UdB.

UdA=false

Ub<=10

UdB=
0

Ua=0

UdA=true

Config=1 Config=0

Ub>10

UdB=1

1

5

4

2

3

6

0

Ct =3
Ct <3

Figure 3 Decision Tree for Over Voltage

To show a more common case that includes an

OR gate in the fault tree, another example is

shown below:

F
ra

m
e
 c

o
u
n
t

3
 S

e
c
o
n
d
s

F
a
il

to
 c

h
a
n
g
e
 in

 4
 s

e
c
o
n
d
s

G
N

C
 a

n
a
b
le

d
GNC fail

S
M

 l
o
s
s
 c

o
m

m
 1

(0
=

n
o
t)

Figure 4 GNC Fail Event Fault Tree

Similarly, we represent the signals n short

notations. Frame count = Fc; Fail to change in 4

seconds = Fc4; GNC enabled = GNCe; SM loss

conn = Smloss; 3 second = SM3. In this case,

more balanced data inputs will end up with more

evenly distributed decision trees. In the same

way as we showed earlier, the corresponding

decision tree is presented as follows:

3

2

5 64

1

Fc=t Fc=f

Fc4=t Fc4=f SMloss=0

GNCe=t GNCe=f
SM3=fSM3=t

=1

Figure 5 Decision Tree for GNC Fail

We had demonstrated that fault trees can be

mapped to decision trees with examples of the

over voltage and GNC fail fault trees. The

convenience use of decision tree use is that the

available decision tree software programs can

easily pin point a root cause of an event (

including fault event) by recording the edges in

the path of the tree when giving reports and

evaluation of the system status. For more general

purposes and for ease of illustration, we can

abstract the information into a map and construct

a decision tree from this map. The map basically

represents the different events, including fault

events, in the n dimension space. When we deal

with decision trees, we call the events classes.

The class could be fault, nominal, or warning etc.

This demonstration shows that the decision tree

not only can be derived from the fault tree but

also can be constructed from data samples,

which is very useful in real time fault detection

and prediction.

0

S
6

S
7

S
8

S9

S
10

1

S
1

S2
S3 S4 S5

1

Figure 6 Class distributions

To map to the decision tree, we use an example

to explain it. We assume faults in the two

dimension space for simplification of

visualization. Multiple dimensions will follow

the same rules. In Figure 5, we give an example

of the fault scenarios, the triangles represent

normal, called Class 1 and squares represent

faults, called Class 2. We will use cumulative

distribution function (cdf) for tree construction.

The cdf is the probability that the variable takes a

value less than or equal to x. That is

 (1)

This can be expressed mathematically for

continuous distribution:

 (2)

For a discrete distribution, the cdf can be

expressed as

 (3)

When we construct a decision tree, we have a

root, then we have two branches, further, each of

those branches can, have a maximum of two

branches, until no further branches can be

constructed and we reach the bottom of the tree

and we are done. Those procedures could be said

in another way; we are splitting the data until it

couldn’t be split any more. So what we need is

information on where to split, and when do we

stop splitting. With the method of accumulated

distribution function, we construct the trees

using the following steps. First, calculate the cdf

for each class. Second, compare the result for

each class at all the points. Third, the largest

value will be picked and the maximum value

of x will be the split point. Repeat first to third

step until no more points to split remain. In the

example, we calculate the cdf for each class as a

function of each attribute (see Figure 5), and then

pick the split point where the difference of the

two cdf values is maximum.

Figure 7 Calculate split point by using

cdf.(1)

We repeatedly split until all samples in a node

are of the same class. In Figure 6, the horizontal

axis is the possible split points iS 51 <=< i

corresponding to the x-axis in Figure 6, and the

vertical axis is the value of the cdf for each class.

In Figure 6 1f is the cdf value for class 1

(cylinders) and 2f is the cdf value for class 2

(cubes).

In Figue 6, the vertical axis is the possible split

points. iS 105 <=< i corresponding to the y-

axis in Figure 6, and the horizontal axis is the

value of the cdf for each class. In Figure 6 1f is

the cdf value for class 1 (cylinders) and 2f is the

cdf value for class 2 (cubes). The purpose is to

find the point where the distance between 1f

and 2f is the maximum. To calculate the cdf,

we used the estimated function ii Nn / . The

total number of samples in class 1 is 6, and in

class 2 is 4. 1N = 6 and 2N = 4. As shown in

Figure 5 at split point 1S , we have the f1 value

of 1/6, and 2f value of 0. At split point 2S we

have the 1f value of 2/6, and a f2 value of 1/4.

At split point 3S we have the 1f value no

change, still 2/6 or 1/3, and a 2f value of 2/4 or

1/2. At split point S4 we have the 1f value of

1/2 and a 2f value of 3/4. At split point 5S we

have the 1f value of 5/6 and a 2f value of no

change, 3/4.

Similarly in Figure 8 at split 6S the value of 1f

is 1/6 and 2f is 0. At split point 7S we

S6

S7

S8

S9

S10

1

0

f2 f1

cdf

Si

Figure 8 Calculate Split Point Using cdf (2)

have the 1f value of 3/6, and a f2 value of 0.

With the same calculations, at split point 8S we

have the 1f value of 4/6 and a f2 value of 0.

Again, at split point 9S we have the 1f value of

5/6 and a 2f value of 1/4. At split point 10S ,

we have the 1f value of 1 and a 2f value of

2/4.

From Figures 7 and 8, we can see that the split S8

has the maximum distance (4/6) between 1f and

2f among all others. Therefore, we pick the

first split point as 8S . After we split the set on

8S , we have two subsets, one of the subsets has

only class 1 in it, and so we don’t need to do the

further split on this subset. But on the other

subset, we will repeat the same calculations on

the remaining samples to find the further split

points. The procedures to calculate the cdf and

S1 S2 S3 S4 S5

f1

f2

0

cdf

Si

select the maximum distance between 1f and

2f are the same as above. The constructed tree is

shown in Figure 9.

S8

1

2 1

S10

S3 2

Figure 9 Final Decision Tree

When the real time data comes in, we let them

propagate through the decision tree that we

constructed. The faults are detected and

classified when the data samples fall into a fault

class at the terminal node. To illustrate how the

fault happened, we can show the fault mode by

tracking the path that the data went through.

Visualization of the path with a distinctive color

or shape will show the user the clear cause of the

fault.

This method not only can apply to the

conversion of the fault trees to decision trees, it

can also construct decision trees from data

samples at run time during operation of ISS over

time. By simply selecting a set of data samples

from time to time, we can build decision trees

dynamically. In later time, the built decision

trees can be used to compare the new data to the

old data and to predict future faults. The best use

of such trees is to build trees by applying

grouped fault scenarios and then applying real

time data to the tree to compare the pattern to

know fault patterns, faults can be detected when

a pattern is matched.

4. CONCLUSION

We started from ISS fault tree examples to

migrate to decision trees by presenting a method

for converting fault trees to decision trees. The

method shows that the visualization of root cause

of faults is easier and that tree manipulation

becomes more programmatic via available

decision tree programs. The visualization of

decision trees for diagnostics shows a format that

is straightforward and easy to understand. For

ISS real time fault diagnostics, the status of the

systems could be shown by running the signals

through the trees and watching where it stops.

The other advantage to using decision trees is

that the trees can learn the fault patterns and

predict future faults from the historic data. The

learning is done not only on the static data sets

but also can be done at runtime; through

accumulating the real time data sets, the decision

trees can gain and store faults patterns in the

trees and recognize them when they reoccur.

The decision tree plays the role in knowledge

discovery while the fault tree could not.

5. FUTURE DEVELOPMENT

This paper presented the method to migrate the

fault trees to decision trees, which lays a good

foundation for using a data mining technique in

advanced diagnostic systems. The next step will

naturally fall to a project to implement data

mining software for fault detection, prediction,

and analysis. Such software will use the decision

trees as an engine inside of the diagnostic system

application. This engine will be able to gain

knowledge of fault patterns then recognize faults

when they reoccur.

REFERENCE:

[1] Ramesh K. Rayudu, Sandhya

Samarasinghe, and Don Kulasiri, "A

Comparison of Model-based Reasoning

and Learning Approaches to Power

Transmission Fault Diagnosis," 2nd New

Zealand Two-Stream International

Conference on Artificial Neural

Networks and Expert Systems (ANNES

'95), pp 218, 1995.

[2] Tariq Assaf and Joanne Bechta Dugan,

"Automatic generation of diagnostic

expert systems from fault trees,"

Reliability and Maintainability

Symposium, January 2003.

[3] Zhihua Tang and Joanne Bechta Dugan,

"Minimal Cut Set and Sequence

Generation for Dynamic Fault Trees,"

Reliability and Maintainability

Symposium, January 2004.

[4] Joanne Bechta Dugan, “Software system

analysis using fault trees,” Chapter 15,

Handbook of Software Reliability

Engineering, editor MR. Lyu, IEEE

Computer Society Press, McGraw-Hill

Publication 1996.

[5] J. R. Quinlan, Induction of Decision

Trees, Machine Learning, v.1 n.1, p.81-

106, 1986

[6] Ping. Li, Richard. E. Haskell, Darrin. M.

Hanna, “Optimizing Fuzzy Decision

Tree by Using Genetic Algorithms,”

Proceedings of the International

Conference on Artificial Intelligence,

June, 2003, Las Vegas, USA

[7] Olaru, C. and L. Wehenkel, Data

Mining. IEEE Computer Applications in

Power, 1999. 12(3): p. 19-25.

[8] N. H. Robert and D. F. Haasl, Fault

Tree Handbook, National Technical

Information Service, Springfield, VA,

1981

[9] Leiguang Gong, Doug Riecken,

“Constraining Model-based reasoning

using context,”, IEEE/WIC International

Conference on Web Intelligence (WI'03),

pp 507, October 13 - 17, 2003 Halifax,

Canada

